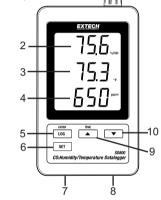


CO₂/Humidity/Temperature Datalogger Model SD800

Introduction

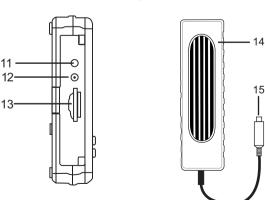

Congratulations on your purchase of the Extech SD800 CO_2 /Temperature/Humidity Datalogger. This meter measures, displays, and stores CO_2 , temperature and relative humidity readings. Data is stored on a SD card for transfer to a PC. This meter is shipped fully tested and calibrated and, with proper use, will provide years of reliable service

Features

- LCD simultaneously displays Carbon Dioxide, Temperature and Relative Humidity
- Datalogger date/time stamps and stores readings on an SD card in Excel® format for easy transfer to a PC
- Selectable data sampling rate: 5, 10, 30, 60, 120, 300, 600 seconds

Product Description

- 1. Humidity/Temperature Sensor
- 2. Humidity Display
- 3. Temperature Display
- 4. CO2 Display
- 5. LOG (ENTER) button
- 6. SET button
- 7. AC adaptor socket
- 8. CO2 probe socket
- 9. ▲(TIME) button
- 10. ▼ button



12. RS-232 output

13. SD memory card socket

14. CO₂ probe

15. CO₂ plug

Note: Battery Compartment and Tilt Stand are located on the back of the meter.

Operation

Setup

- 1. Connect the CO₂ probe to the datalogger by inserting the plug into the connector on the bottom of the datalogger.
- Connect the AC adaptor to the datalogger by inserting the plug into the connector on the bottom of the datalogger.
- 3. Insert the 6 AAA batteries into the battery compartment. Without these batteries installed, the real time clock will reset every time the ac adaptor is disconnected.

Datalogging

Open the left side door and insert a formatted SD card

Note: The SD card should be at least 1GB in capacity (4GB to 16GB recommended)

Note: Do not use memory cards formatted by other meters or cameras. Use the SD card formatting procedure under the advanced features section of this manual to correctly format the card.

Note: The internal clock must be set to the correct time See the advanced features section of this manual to set the clock.

Note: The default data structure uses a decimal point "." as the numeric decimal indicator. See the advanced features section of this manual to change this to a comma ",".

Note: If the SD memory card is not installed, "EMPTY" will appear in the display

Note: Displayed error messages:

CH-CArd

The memory card is full or there is a problem with the card

LobAt

The battery is low.

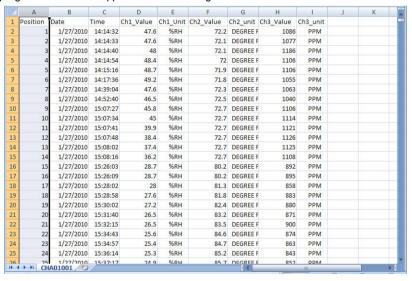
No
CArd

The SD card is not inserted

- 2. Press the LOGGER button for >2 seconds to begin logging. "DATALOGGER" will appear in the display and the meter will beep each time the data is recorded (if the beeper is enabled).
- 3. To stop datalogging, press the LOGGER button for >2 seconds. "DATALOGGER" will change to "DATA" and the meter will count down through the recorded data.

NOTE: To avoid corrupting data, do not remove the memory card without properly ending the record function.

Time/Date/Sample Rate Check


Press and Hold the TIME button for >2 seconds and the display will cycle through the date, time and sample rate information.

SD Card Data Structure

- 1. When the SD card if first inserted into the datalogger the folder CHA01 is created.
- The first datalogging session will then create a file CHA01001.XLS. All data will be saved to this file until the number of columns reaches 30.000.
- After 30, 000 columns a new file, CHA01002.XLS is created. This is repeated every 30,000 columns until CHA01099.XLS. At this point a new folder, CHA02 is created and the process is repeated. CHA10 is the final folder.

Transferring Data to a PC

- 1. Remove the memory card from the datalogger and plug it into the SD card slot on the PC.
- 2. Launch Excel® and open the data file on the memory card from within the spreadsheet program. The file will appear similar to the figure below.

Advanced Settings

The SET function is used to accomplish the following:

- Format the SD memory card
- Set the date and time
- Set the sampling time
- Set the beeper sound ON/OFF
- Set the SD card Decimal character
- Select the Temperature units
- Set the RS232 data output ON/OFF
- Set CO₂ height compensation in meters
- Set CO₂ height compensation in feet
- 2. Sd F Format the SD card. Press the ▲ button to select yES or no. For yES, press the Enter button to format the card and erase all existing data.
- 3. dAtE Set the date and time. Press the ▲ or ▼ buttons to adjust the selected field. Press the Enter button to store the value and to step through the various fields.
- 4. SP-t Set the sample rate. Press the ▲ button to select the desired sample rate and press Enter to store the selection. The selections are: 5, 10, 30, 60, 120, 300, 600 seconds and AUTO. In AUTO, the data will be stored every time there is a temperature change of >1 degree, > 1 %RH or > 50 ppm.
- bEEP Set the beeper ON or OFF. Press the ▲ button to select ON or OFF and press Enter to store the selection.
- dEC Set the SD card Decimal character. Press the ▲ button to select USA (decimal) or Euro (comma) and press Enter to store the selection.
- 7. t-CF Set the Temp. unit to °F or °C and press ENTER to store the selection.
- rS232 Set the RS232 data output ON/OFF. Press the ▲ button to select ON or off and press Enter to store the selection
- HIgh- Set the height compensation for CO₂ in meters. Press the ▲ or ▼ buttons to adjust the selected field to the height (altitude) of the measurement site. This adjustment will improve measurement accuracy.
- 10. HIghF Set the height compensation for CO₂ in feet. Press the ▲ or ▼ buttons to adjust the selected field to the height (altitude) of the measurement site. This adjustment will improve measurement accuracy.
- 11. ESC Exit the setting mode. Press the SET button to return to normal operation.

System RESET

If a condition appears where the CPU does not respond to keystrokes or the meter seems frozen, press the RESET button on the side of the datalogger (use a paper clip or similar pointed object) to return the meter to a working state.

RS232 Interface

A serial output is provided to link the meter to a PC's serial port. Call Technical Assistance for more information on this interface.

Battery Warning, Installation and Replacement

- When the AC adaptor is not connected and the lower lo
- 2. Replace the six AAA batteries (use alkaline heavy duty type), observing polarity
- 3. Replace and secure the cover.

4.

You, as the end user, are legally bound (**EU Battery ordinance**) to return all used batteries, **disposal in the household garbage is prohibited!** You can hand over your used batteries / accumulators at collection points in your community or wherever batteries / accumulators are sold!

Disposal: Follow the valid legal stipulations in respect of the disposal of the device at the end of its lifecycle

Specifications

60 x 50 mm (2.4 x 2.0") LCD Display Measurement sensors Temperature: Internal sensor

Relative Humidity: Precision capacitance type

CO₂: NDIR

CO₂ Response Time <2 min to 63% of final reading typical Memory Card SD memory card. 1 GB to 16 GB.

Datalogger Sampling Time 5/10/30/60/120/300/600 seconds or Auto.

Temperature Compensation Automatic

Display update rate Approx. 1 second

Data Output RS 232

Operating Temperature 0 to 50°C (32 to 122°F) Operating Humidity Less than 90% RH Power Supply 9V AC adaptor.

Six (6) AAA (UM4) 1.5 V batteries for clock backup

Weight Meter: 240 g (0.53lbs.). Probe 158g (0.35lb) Dimension Meter: 132 x 80 x 32mm (5.2 x 3.1 x 1.3") Probe: 132 x 38 x 32mm (5.2 x 1.5 x 1.3")

	Range	Resolution	Accuracy
Temperature	0.0 to 50.0 °C	0.1°C	± 0.8°C
	32.0 to 122.0°F	0.1°F	± 1.8°F
Relative Humidity	10 to 70%	0.1%	± 4% RH
	70 to 90%		± (4% of reading + 1% RH)
CO ₂	≤1000ppm		± 40ppm
	>1000 to ≤3000ppm:	1ppm	± 5% of reading
	>3000ppm		±250ppm typical

Note: Above specification tests under the environment RF Field Strength less than 3 V/M & frequency less than 30 MHz only.

Copyright © 2013 FLIR Systems, Inc.

All rights reserved including the right of reproduction in whole or in part in any form. www.extech.com